The Discovery of the Kaons Emily Conover University

The Discovery of the Kaons Emily Conover University

The Discovery of the Kaons Emily Conover University of Chicago PH 364 5/7/08 The state of particle physics in mid 1940sYukawas pion has been found Diracs positron has been found Idea of neutrinos was mostly accepted The muon was confusing, but otherwise, it looked like things were falling together in an orderly fashion that was fairly well understood. Rochester and Butler 1945 - Butler joins the physics department at Manchester University 1946- Butler begins work with George Rochester They used a setup with a cloud chamber and a magnetic field to investigate particles in cosmic ray showers at ground level. Sets of counters provided

a triggering system. 1947 - photos of V0 and V+ events are published Sir Clifford Charles Butler Biographical Memoirs of Fellows of the Royal Society Vol. 47, (Nov., 2001) V events Rochester and Butler, Nature 160 (1947), 855 V+ QuickTime and a TIFF (Uncompressed) decompressor are needed to see this picture. V0 a+ + bProbably pions QuickTime and a TIFF (Uncompressed) decompressor

are needed to see this picture. V+ c+ + neutral particle(s) where c+ is a pion or muon Masses of V particles were estimated at 500 200 MeV - unlike anything seen before These eventually became known as the decays 0 and + + . Cecil Powell and the Bristol Group -Weve already met him (in Antons talk) -His group used emulsions at a research station at Jungfraujoch (Switzerland) laureates/1950/powell-bio.html 3580 meters above sea level The top of Europe In 1949 they publish a photo in Nature of a particle that comes to be known as the +. Another heavy meson event + + + Brown et al., Nature 163, 82 (1949) QuickTime and a TIFF (Uncompressed) decompressor are needed to see this picture. + + - +

- captured by nucleus Early 1950s developments: More events were discovered - +, +, +, 0, + Many papers written/photos published relating to the subject. July 1953 - International Cosmic Ray Conference- Bagneres-de-Bigorre, France. The conference focused on the new particles. During the conference a Committee on Nomenclature was formed to come up with a naming scheme: The genericQname K meson was adopted K to describe the new particles, and a symbol x (mass) where Q=charge, n = number of decay products, and x specifies decay products. Richard Dalitz (Bristol group - later at Chicago) - We were all warned by the senior physicists at the conference [...] not to make any simplifying assumptions about the relationships between the particles observed. We should use only these neutral, unbiased names [...] until we had firm evidence of any such relationship, beyond any doubt, since it appeared that we were facing a complicated situation.

~1955 - Work shifted from cosmic ray studies to work with synchrotrons. At the Bevatron (Berkeley) and the Cosmotron (Brookhaven) data about the new particles was accumulated much more rapidly. The - puzzle + + + + + 0 The two particles were similar - their masses agreed within several MeV, and their lifetimes were roughly equal. Thus they appeared to be related (the same particle?) However, the decay products of the + have a parity of (-1)(-1)J, while those of the + have a parity of (-1)J, where J is the spin of the original K meson. Thus, either +and + have opposite parity (and thus are different particles) or parity is not conserved in this decay. Richard Dalitz - I found myself unable to withstand the local pressures against any hypothesis of parity nonconservation. The argument against it was that parity violation was simply inconceivable and it was nonsensical even to mention this possibility.

-Lee and Yang (1956) suggest that the particles are the same and parity is not conserved. -Wu et. al. (1957) - Parity nonconservation in beta decay of cobalt nuclei. Not inconceivable anymore! + and + are then accepted as the same particle, called K+. What about the other particles? It was then determined that the many particles could be described by four 0 K mesons- K, K0, and K, where K- is the anti particle of K+, and the second neutral kaon is the antiparticle of the first. They make up two isospin doublets, with K+ and K0 forming one doublet, 0 0 and K- and K forming a second. The existence of Kwas required to complete the second isospin doublet.

In addition, other, heavier particles that created similar decays had been found which did not fit this scheme, e.g. the decay now known as p+ + - was discovered by Anderson at CalTech in 1950. Strangeness The particles were produced with copiously, but had long lifetimes.Had lifetimes ~10-10s, where a lifetime of ~10-23s would have been expected from the production rate. Produced in a different manner than they decayed. Must be produced in pairs- Abraham Pais, 1952 1953 - Murray Gell-Mann and Kazuhiko Nishijima propose a strangeness scheme: Abraham Pais PHTOAD-ft/vol_54/iss_5/79_2.shtml

S = 2(Q - I3 - B/2) For any interaction in which S 0, 0, one of the above quantities (charge, baryon number, isospin) must not be conserved. The conservation of charge and baryon number was more fundamental and thus the reactions were taken to violate conservation of I3. Thus the strange particles are produced in pairs in interactions which conserve strangeness (and isospin), explaining why they are produced frequently, but they decay through weaker interactions that do not conserve strangeness or isospin, which occur much more slowly . Gell-Mann on a Guinean Stamp! Bios/MurrayGellMann.html Mixing of Neutral KaonsCP Invariance 0

K , K both can decay to 0 + - or 0 0 Ks = K = K0 + K0 2 K0 K0 2 Fermi asks - How do we tell them apart? 0

Leads Gell-Mann 0and Pais to the idea that the K0 , and 0 K K + 0 can become through K . K states mix,as K0 They create CP eigenstates. CP|K L> = -|KL> , CP|Ks> = |Ks>, one of

which has a long lifetime, the other of which has a shorter lifetime. Ks can decay to two pions (which have CP=+1), but due to CP conservation, KL can only decay to more complex modes (e.g. three pions). This leads to a longer lifetime for KL. Of their 1955 article in the Physical Review, Cronin says (in his autobiography)- You get shivers up and down your spine 1956 - KL is discovered at Brookhaven. CP violation 1964 Cronin and Fitch report that they have observed KL + - in a small fraction of decays - a process forbidden by CP conservation! Cronin continues his studies of CP violation after coming to Chicago in 1970, wins Nobel prize in 1980. James W. Cronin Val Fitch The greatest pleasure a scientist can experience is to encounter an unexpected

discovery - Cronin in his Nobel lecture. Conclusions Discovery of Kaons led to -the idea of strangeness -discovery of parity nonconservation -discovery of CP violation

Recently Viewed Presentations

  • OFFENSE Offensive Goals HAVE FUN! Learn to love

    OFFENSE Offensive Goals HAVE FUN! Learn to love

    "Jet" is our speed sweep series to allow individuals to reach the perimeter as fast as possible and isolate mismatched force defenders. We will put the ball carrier in motion before the snap and have the ball hiked once the...
  • logic & Prolog - Computer Action Team

    logic & Prolog - Computer Action Team

    in general, the genetic algorithm: start with an initial (usually random) population of chromosomes while the termination condition is not met evaluate the fitness of each member of the population select members of the population that are most fit produce...
  • Osnove Ekonomije

    Osnove Ekonomije

    Ekonomija je širi a ekonomika uži pojam. "EKONOMIJA" Termin "ekonomija" potječe od grčkih riječi "oikos" (kuća, domaćinstvo) i "nomos" (zakon, pravilo o upravljanju). Iz tih riječi nastala je starogrčka riječ "oikonomos" što bi u slobodnom prijevodu značilo skup pravila i...
  • Maths in England's Schools: now and in the future

    Maths in England's Schools: now and in the future

    Expectations of algebraic thinking could be based on reasoning about relations between quantities, such as patterns, structure, equivalence, commutativity, distributivity, and associativity. ... Maths in England's Schools: now and in the future
  • Nomenclature of Molecular Name the least electronegative nonmetal

    Nomenclature of Molecular Name the least electronegative nonmetal

    P2S3 6. SiO2 7. SF6 8. NI3 9. PH3 10. CBr4 11. P4O10 12. OF2 Arsenic trichloride Selenium monoxide Xenon tetrafluoride Diboron trioxide Diphosphorus trisulfide Silicon dioxide Sulfur hexafluoride Nitrogen triiodide Phosphine, this is another exception. Carbon tetrabromide Tetraphosphorus decaoxide...
  • Sentinel Injuries in Physical Abuse

    Sentinel Injuries in Physical Abuse

    NEUROIMAGING (Non-contrast Head CT or MRI) Approx. 30-40% of neurologically normal children < 2 years of age with high risk presentation for abuse have occult head injury identified on imaging. Laskey, A et al. Occult head trauma in young suspected...
  • The Rise of Big Business

    The Rise of Big Business

    turn-of-the-century america
  • The Work of Wind and Waves Presentation Wind

    The Work of Wind and Waves Presentation Wind

    Landforms of Littoral Drift Depositional landforms along a coast. Landforms of Littoral Drift a) Aerial view of the Outer Banks, Cape Hatteras, North Carolina. b) Cape Cod, Massachusetts. c) Long Island, New York. a) b) c) Wave Refraction In deep...