LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane

LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane

LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 13 Meiosis and Sexual Life Cycles Lectures by Erin Barley Kathleen Fitzpatrick 2011 Pearson Education, Inc. Inheritance of Genes Genes are the units of heredity, and are made up of segments of DNA that code for a protein. Genes are passed to the next generation via

reproductive cells called gametes (sperm and eggs) Each gene has a specific location called a locus on a certain chromosome Most DNA is packaged into chromosomes, which are a collection of genes. 2011 Pearson Education, Inc. Comparison of Asexual and Sexual Reproduction In asexual reproduction, a single individual passes genes to its offspring without the fusion of gametes A clone is a group of genetically identical individuals from the same parent In sexual reproduction, two parents give rise to offspring that have unique combinations of

genes inherited from the two parents (1 cont.) Video: Hydra Budding 2011 Pearson Education, Inc. Figure 13.2 0.5 mm Parent Bud (a) Hydra (b) Redwoods Concept 13.2: Fertilization and meiosis alternate in sexual life cycles A life cycle is the generation-to-generation

sequence of stages in the reproductive history of an organism 2011 Pearson Education, Inc. Sets of Chromosomes in Human Cells Human somatic cells aka body cells (any cell other than a gamete) have 23 pairs of chromosomes A karyotype is an ordered display of the pairs of chromosomes from a cell The two chromosomes in each pair are called homologous chromosomes, or homologs(9) Chromosomes in a homologous pair are the same length and shape and carry genes controlling the same inherited characters 2011 Pearson Education, Inc.

Figure 13.3 APPLICATION (7 & 8) TECHNIQUE Pair of homologous duplicated chromosomes Centromere Sister chromatids Metaphase chromosome 5 m

The sex chromosomes, which determine the sex/gender of the individual, are called X and Y Human females have a homologous pair of X chromosomes (XX) Human males have one X and one Y chromosome The remaining 22 pairs of chromosomes are called autosomes (6) 2011 Pearson Education, Inc. Each pair of homologous chromosomes includes one chromosome from each parent The 46 chromosomes in a human somatic cell are two sets of 23: one from the mother and one from the father A diploid cell (2n) has two sets of chromosomes

For humans, the diploid number is 46 (2n = 46) A haploid cell (n) has one set of chromosomes 2011 Pearson Education, Inc. A gamete (sperm or egg) contains a single set of chromosomes, and is haploid (n) For humans, the haploid number is 23 (n = 23) Each set of 23 consists of 22 autosomes and a single sex chromosome In an unfertilized egg (ovum), the sex chromosome is X In a sperm cell, the sex chromosome may be either X or Y 2011 Pearson Education, Inc. Figure 13.4

Key 2n 6 Maternal set of chromosomes (n 3)) Paternal set of chromosomes (n 3)) Sister chromatids of one duplicated chromosome Two nonsister chromatids in a homologous pair (12 & 13)

Centromere Pair of homologous chromosomes (one from each set) At sexual maturity, the ovaries and testes produce haploid gametes Gametes are the only types of human cells produced by meiosis, rather than mitosis Meiosis results in one set of chromosomes in each gamete Fertilization and meiosis alternate in sexual life cycles to maintain chromosome number (14, 15, & 17) 2011 Pearson Education, Inc.

Behavior of Chromosome Sets in the Human Life Cycle Fertilization is the union of gametes (the sperm and the egg) The fertilized egg is called a zygote and has one set of chromosomes from each parent The zygote produces somatic cells by mitosis and develops into an adult (16) 2011 Pearson Education, Inc. The Variety of Sexual Life Cycles The alternation of meiosis and fertilization is common to all organisms that reproduce sexually The three main types of sexual life cycles differ in the timing of meiosis and fertilization

2011 Pearson Education, Inc. Figure 13.6a Key Haploid (n) Diploid (2n) n Gametes n n MEIOSIS 2n

Diploid multicellular organism (a) Animals FERTILIZATION Zygote 2n Mitosis Plants and some algae exhibit an alternation of generations This life cycle includes both a diploid and haploid multicellular stage The diploid organism, called the sporophyte, makes haploid spores by meiosis (18) 2011 Pearson Education, Inc.

Each spore grows by mitosis into a haploid organism called a gametophyte A gametophyte makes haploid gametes by mitosis Fertilization of gametes results in a diploid sporophyte 2011 Pearson Education, Inc. Figure 13.6b Key Haploid (n) Diploid (2n) (19)

Haploid multicellular organism (gametophyte) Mitosis n n Mitosis n n Spores Gametes MEIOSIS 2n

Diploid multicellular organism (sporophyte) n FERTILIZATION 2n Zygote Mitosis (b) Plants and some algae In most fungi and some protists, the only diploid stage is the single-celled zygote; there

is no multicellular diploid stage The zygote produces haploid cells by meiosis Each haploid cell grows by mitosis into a haploid multicellular organism The haploid adult produces gametes by mitosis 2011 Pearson Education, Inc. Figure 13.6c Key Haploid (n) Diploid (2n) Haploid unicellular or multicellular organism Mitosis

n n n Mitosis n Gametes MEIOSIS n FERTILIZATION 2n Zygote

(c) Most fungi and some protists Concept 13.3: Meiosis reduces the number of chromosome sets from diploid to haploid The next few slides are an overview of meiosis. There are in here to give you the general idea of the process before we go into specific details. Sit back and take this in as a nice review 2011 Pearson Education, Inc. Concept 13.3: Meiosis reduces the number of chromosome sets from diploid to haploid Like mitosis, meiosis is preceded by the replication of chromosomes (interphase) Meiosis takes place in two sets of cell divisions, called meiosis I and meiosis II

The two cell divisions result in four haploid daughter cells, rather than the two diploid daughter cells in mitosis Each daughter cell has only half as many chromosomes as the parent cell as is genetically different from parent(unlike mitosis) 2011 Pearson Education, Inc. The Stages of Meiosis After chromosomes duplicate, two divisions follow Meiosis I (reductional division): homologs pair up and separate, resulting in two haploid daughter cells with replicated chromosomes Meiosis II (equational division) sister chromatids separate The result is four haploid daughter cells with

unreplicated chromosomes 2011 Pearson Education, Inc. Figure 13.7-3 Interphase Pair of homologous chromosomes in diploid parent cell Duplicated pair of homologous chromosomes Sister chromatids 46 Chromosomes

duplicate Diploid cell with duplicated chromosomes 92 Meiosis I 1 Homologous chromosomes separate 46 Haploid cells with duplicated chromosomes

Meiosis II 2 Sister chromatids separate Haploid cells with unduplicated chromosomes 23 Division in meiosis I occurs in four phases Prophase I Metaphase I Anaphase I Telophase I and cytokinesis

2011 Pearson Education, Inc. Prophase I Prophase I typically occupies more than 90% of the time required for meiosis Chromosomes begin to condense In synapsis, homologous chromosomes loosely pair up, aligned gene by gene In crossing over, nonsister chromatids exchange DNA segments Each pair of chromosomes forms a tetrad, a group of four chromatids Each tetrad usually has one or more chiasmata, X-shaped regions where crossing over occurred (21) 2011 Pearson Education, Inc.

Metaphase I In metaphase I, tetrads line up at the metaphase plate (side by side in homologous pairs), with one chromosome facing each pole Microtubules from one pole are attached to the kinetochore of one chromosome of each tetrad Microtubules from the other pole are attached to the kinetochore of the other chromosome How did the chromosomes line up in metaphase of mitosis? 2011 Pearson Education, Inc. Anaphase I In anaphase I, pairs of homologous chromosomes separate (23) One chromosome moves toward each pole, guided by the spindle apparatus Sister chromatids remain attached at the

centromere and move as one unit toward the pole 2011 Pearson Education, Inc. Telophase I and Cytokinesis In the beginning of telophase I, each half of the cell has a haploid set of chromosomes; each chromosome still consists of two sister chromatids*****(24) Cytokinesis usually occurs simultaneously, forming two haploid daughter cells 2011 Pearson Education, Inc. Figure 13.8 MEIOSIS I: Separates sister chromatids

MEIOSIS I: Separates homologous chromosomes Prophase I Metaphase I Centrosome (with centriole pair) Sister chromatids Chiasmata Fragments of nuclear envelope Duplicated homologous

chromosomes (red and blue) pair and exchange segments; 2n 6 in this example. Prophase II Metaphase II Anaphase II Telophase II and Cytokinesis Sister chromatids remain attached Centromere (with kinetochore)

Spindle Homologous chromosomes Telophase I and Cytokinesis Anaphase I Metaphase plate Homologous chromosomes separate Microtubule attached to

kinetochore Chromosomes line up by homologous pairs. Cleavage furrow Each pair of homologous chromosomes separates. During another round of cell division, the sister chromatids finally separate; four haploid daughter cells result, containing unduplicated chromosomes. Sister chromatids separate Two haploid cells form; each chromosome still consists of two

sister chromatids. Haploid daughter cells forming In animal cells, a cleavage furrow forms; in plant cells, a cell plate forms No chromosome replication occurs between the end of meiosis I and the beginning of meiosis II because the chromosomes are already replicated 2011 Pearson Education, Inc. Division in meiosis II also occurs in four phases

Prophase II Metaphase II Anaphase II Telophase II and cytokinesis Meiosis II is very similar to mitosis It will separate sister chromatids 2011 Pearson Education, Inc. Prophase II In prophase II, a spindle apparatus forms In late prophase II, chromosomes (each still composed of two chromatids) move toward the metaphase plate

2011 Pearson Education, Inc. Metaphase II In metaphase II, the sister chromatids are arranged at the metaphase plate Because of crossing over in meiosis I, the two sister chromatids of each chromosome are no longer genetically identical The kinetochores of sister chromatids attach to microtubules extending from opposite poles 2011 Pearson Education, Inc. Anaphase II In anaphase II, the sister chromatids separate The sister chromatids of each chromosome now move as two newly individual

chromosomes toward opposite poles 2011 Pearson Education, Inc. Telophase II and Cytokinesis In telophase II, the chromosomes arrive at opposite poles Nuclei form, and the chromosomes begin decondensing http://highered.mcgraw-hill.com/sites/0072495855/student_view0/chapter28/animation__ how_meiosis_works.html http://highered.mcgraw-hill.com/sites/0072495855/student_view0/chapter28/ animation__stages_of_meiosis.html 2011 Pearson Education, Inc.

Cytokinesis separates the cytoplasm At the end of meiosis, there are four daughter cells, each with a haploid set of unreplicated chromosomes Each daughter cell is genetically distinct from the others and from the parent cell 2011 Pearson Education, Inc. A Comparison of Mitosis and Meiosis Mitosis conserves the number of chromosome sets, producing cells that are genetically identical to the parent cell Meiosis reduces the number of chromosomes sets from two (diploid) to one (haploid), producing cells that differ genetically from each other and from the parent cell

2011 Pearson Education, Inc. Figure 13.9a MEIOSIS MITOSIS Parent cell (27) MEIOSIS I Chiasma Prophase

Prophase I Duplicated chromosome Chromosome duplication 2n 6 Chromosome duplication Homologous chromosome pair Metaphase

Metaphase I Anaphase Telophase Anaphase I Telophase I Daughter cells of meiosis I 2n Daughter cells of mitosis 2n

Haploid n 3) MEIOSIS II n n n n Daughter cells of meiosis II Figure 13.9b http://highered.mcgraw-hill.com/sites/0072495855/student_view0/chapter28/ animation__comparison_of_meiosis_and_mitosis__quiz_1_.html SUMMARY Property

Mitosis Meiosis DNA replication Occurs during interphase before mitosis begins Occurs during interphase before meiosis I begins Number of divisions One, including prophase, metaphase, anaphase, and telophase

Two, each including prophase, metaphase, anaphase, and telophase Synapsis of homologous chromosomes Does not occur Occurs during prophase I along with crossing over between nonsister chromatids; resulting chiasmata hold pairs together due to sister chromatid cohesion Number of daughter cells and genetic composition

Two, each diploid (2n) and genetically identical to the parent cell Four, each haploid (n), containing half as many chromosomes as the parent cell; genetically different from the parent cell and from each other Role in the animal body Enables multicellular adult to arise from zygote; produces cells for growth, repair, and, in some species, asexual reproduction Produces gametes; reduces number of chromosomes by half and introduces genetic variability among the gametes

Three events are unique to meiosis, and all three occur in meiosis l Synapsis and crossing over in prophase I: Homologous chromosomes physically connect and exchange genetic information At the metaphase plate, there are paired homologous chromosomes (tetrads), instead of individual replicated chromosomes At anaphase I, it is homologous chromosomes, instead of sister chromatids, that separate 2011 Pearson Education, Inc. Concept 13.4: Genetic variation produced in sexual life cycles contributes to evolution Mutations (changes in an organisms DNA) are

the original source of genetic diversity Mutations create different versions of genes called alleles (20) Reshuffling of alleles during sexual reproduction produces genetic variation 2011 Pearson Education, Inc. Origins of Genetic Variation Among Offspring The behavior of chromosomes during meiosis and fertilization is responsible for most of the variation that arises in each generation Three mechanisms contribute to genetic variation Independent assortment of chromosomes Crossing over Random fertilization

2011 Pearson Education, Inc. Independent Assortment of Chromosomes Homologous pairs of chromosomes orient randomly at metaphase I of meiosis In independent assortment, each pair of chromosomes sorts maternal and paternal homologues into daughter cells independently of the other pairs http://highered.mcgraw-hill.com/sites/0072495855/student_view0/chapter28/ animation__random_orientation_of_chromosomes_during_meiosis.html 2011 Pearson Education, Inc. The number of combinations possible when

chromosomes assort independently into gametes is 2n, where n is the haploid number For humans (n = 23), there are more than 8 million (223) possible combinations of chromosomes 2011 Pearson Education, Inc. Figure 13.10-3 Possibility 2 Possibility 1 Two equally probable arrangements of chromosomes at metaphase I

Metaphase II Daughter cells Combination 1 Combination 2 Combination 3) Combination 4 Crossing Over Crossing over produces recombinant chromosomes, which combine DNA inherited from each parent Crossing over begins very early in prophase I, as homologous chromosomes pair up gene by gene (31) 2011 Pearson Education, Inc.

In crossing over, homologous portions of two nonsister chromatids trade places Crossing over contributes to genetic variation by combining DNA from two parents into a single chromosome 2011 Pearson Education, Inc. Figure 13.11-5 Prophase I of meiosis Pair of homologs Nonsister chromatids held together during synapsis

Chiasma Centromere TEM Anaphase I Anaphase II Daughter cells Recombinant chromosomes Random Fertilization Random fertilization adds to genetic variation because any sperm can fuse with any ovum (unfertilized egg) The fusion of two gametes (each with 8.4 million possible chromosome combinations

from independent assortment) produces a zygote with any of about 70 trillion diploid combinations http://highered.mcgraw-hill.com/sites/0072495855/student_view0/chapter28/ animation__unique_features_of_meiosis.html 2011 Pearson Education, Inc. Crossing over adds even more variation Each zygote has a unique genetic identity Animation: Genetic Variation 2011 Pearson Education, Inc. The Evolutionary Significance of Genetic Variation Within Populations

Natural selection results in the accumulation of genetic variations favored by the environment Sexual reproduction contributes to the genetic variation in a population, which originates from mutations 2011 Pearson Education, Inc.

Recently Viewed Presentations

  • Chapter 6 - Ionic Compounds - Physicsservello

    Chapter 6 - Ionic Compounds - Physicsservello

    The electrostatic force of attraction is called ionic bonding Ionic Bonding Model Two examples representing part of the crystal lattice of the ionic compound sodium chloride. Properties of Ionic Compounds High melting temperature To melt an ionic solid, energy must...
  • Freshman/sophomore information session

    Freshman/sophomore information session

    A secure site that gives parents and students more information about the student's daily performance at schoolincluding grades, attendance, and food service. ... Students should be able to log in using the same login credentials used on campus. ... and...
  • Aspects of E-Business

    Aspects of E-Business

    Define Internet. Open a web browsing application. Understand the make-up and structure of a web address. ... The line can be an ordinary telephone line or an ISDN line. An . ISDN ( integrated services digital network) line is high-speed...
  • CONFIDENTIAL Experience Report: Paradise A two-stage DSL embedded

    CONFIDENTIAL Experience Report: Paradise A two-stage DSL embedded

    version 1 E - updated Policy Disclaimer textboxes for new multi-language options date: 7/19/2002 version 1 D - added Policy Disclaimer language date: 6/26/2002 App One 1.c Changed Color Scheme and redirected objects to new color scheme associations September 14,...
  • Differential cross sections and polarization observables from ...

    Differential cross sections and polarization observables from ...

    The spin-density matrix elements were relatively easy to extract, but this work would not have gotten done without the Bonn group. It is likely that the "missing" N* resonances are there, and just need to be "found" Reactions with high-mass...
  • Chapter 10

    Chapter 10

    Chapitre 11 L'Exploration Spatiale Le Canada et L'Exploration Spatiale Le Canada a joué un rôle dans l'exploration spatiale depuis le début Le Canada est le troisième pays à lancer un satellite (Alouette 1 en 1962) Les contributions canadiennes et partenariats...
  • Redhawks Consulting Souk el Tayeb Good Food Market

    Redhawks Consulting Souk el Tayeb Good Food Market

    Internal Analysis. Analysis slide. Financial Analysis. Internal Analysis. Alternatives. Decision Gate. Souk el Tayeb. New business venture. ... New venture in other location. eco-waste management. Expand producer network. New venture in Beirut. Alternative #1. Start a catering business.
  • Policy Spotlight: HB 149 - Dpi

    Policy Spotlight: HB 149 - Dpi

    The NCDPI Exceptional Children Division is currently provided professional development on the use of the NC Early Numeracy Indicators and curriculum based measures of math computation to screen for indicators of risk for math difficulties and as a progress monitoring...