Stephen D. Preston U.S. Geological Survey / Chesapeake Bay Program Office Annapolis, Maryland Chesapeake Chesapeake Bay Bay Geography Geography Watershed Characteristics Chesapeake Bay Watershed * 64,000 square miles in area NY * includes parts of six States & DC Land Use * 9 major drainages Agriculture Baren Forest Urban Water PA Bay Characteristics
MD WV DE * 4,500 square miles in area * encompassed by two States MD and VA VA * most drainage comes from PA, MD and VA 0 20 40 60 80 100 Miles Chesapeake Chesapeake Bay Bay Impairments Impairments Variety of Ecological Impacts - Eutrophication Anoxia Seasonal Algal Blooms Loss of Submerged Aquatic Vegetation Loss of Economically Important Species
Tidal Tidal Water-Quality Water-Quality Monitoring Monitoring Objectives Objectives of of Tidal Tidal Monitoring Monitoring A. Characterization, Status - Water-Quality Criteria - Nutrient Reduction Goals - Biological and Ecological Indicators B. Temporal Changes - Long-Term Trends C. Tidal Water-Quality Modeling D. Understanding of Processes Related to the Attainment of Water-Quality Criteria and Other Restoration Goals Designated Designated Uses Uses for for Chesapeake Chesapeake Bay Bay A. Cross Section of Chesapeake Bay or Tidal Tributary Shallow Water Open Water Deep Water
Deep Channel B. Oblique View of the Chesapeake Bay and its Tidal Tributaries Migratory Finfish Spawning and Nursery Habitat Shallow Water Habitat Open Water Habitat Deep Water Deep Channel Application Application of of Water-Quality Water-Quality Criteria Criteria Dissolved Oxygen Chlorophyll a X X Shallow Water
X X Open Water X X Deep Water X Deep Channel X Migratory Spawning and Nursery Water Clarity X Spatial Spatial Extent Extent of of Tidal
Tidal Monitoring Monitoring CBP Monitoring Segmentation Potential Potential Approaches Approaches for for Tidal Tidal Monitoring Monitoring A. Buoy Systems * Potential Need - Dissolved Oxygen Criteria B. Probability-Based Monitoring * Potential Need - Shallow-Water Monitoring C. Fixed-Station Monitoring * Potential Need - All Objectives, Some Designated Uses D. Continuous Underway Monitoring Systems * Potential Need - Detailed Spatial Assessment E. Remote Sensing (Aerial Over-flights, Satellite Imagery) * Potential Need - Chlorophyll Criteria Attainment Fixed-Station $ $
$ Water-Quality Monitoring $ $ $ $ $ $ $ $ $ $ $ $ $ $ Network $
$ $ $ $ $$ $ $ $ $ $ $ $ $ $ $ $$$ $ $ $$ $ $$ in Relation to the $
$ $ $ $ $ $ $ $ $ $ $ $ $$ $ $ $ $ $ $
$ $ $ $ $ $ $ $ $ $ $ $ $ and Deep Channel $ $ $ $ $
$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $
$ $ $ $ $ $ $ $ Designated Uses $ $ $ $ $ $ $ $ $ $ $ $
Open Water, Deep Water $ $ $ $ $ $ $ $ $ $ $ $ $ $$ $ $ $ $ $ $
$ $ $ $ $ Interpretation Interpretation Of Of Fixed-Station Fixed-Station Data Data Continuous Continuous Underway Underway Monitoring Monitoring Continuous Continuous Underway Underway Monitoring Monitoring Non-Tidal Non-Tidal Water-Quality Water-Quality Monitoring Monitoring Network Network Design
Design Objectives Objectives of of Non-Tidal Non-Tidal Monitoring Monitoring A. Flux from the Watershed - Load Estimation B. Temporal Changes - Long-Term Trends C. Effectiveness of BMPs - Watershed Modeling D. Research / Education Objectives Objectives Load Load Estimation Estimation WRIR 99-4238, Belval and Sprague Objectives Objectives Trend Trend Analysis Analysis WRIR 98-4192, Langland Sprague and others (2000) WRIR 00-4218 TOTAL NITROGEN 8
8,000 6 6,000 4 4,000 2 0 2,000 1985 1987 1989 1991 1993 1995 EXPLANATION DAILY MEAN DISCHARGE CONCENTRATION
1997 0 DISCHARGE, IN CUBIC FEET PER SECOND CONCENTRATION, IN MILLIGRAMS PER LITER Patuxent River DELIVERED LOAD, IN 105 KILOGRAMS PER YEAR Factors Affecting Nutrient Trends In Major Rivers of the Chesapeake Bay Watershed NITROGEN SOURCES URBAN FOREST AGRICULTURE SEPTIC ATMOSPHERIC POINT SOURCE 1985 1998 Patuxent River Basin Total Nitrogen
Delivered gm / m2-yr Yield 0- 0.1 0.1- 0.2 0.2- 0.3 0.3- 0.4 0.4- 0.5 0 .5- 0.6 0.6- 0.7 0.7- 0.8 0.8- 0.9 0.9- 162. No data %% %% Chesapeake Chesapeake Bay Bay %% %%% %% %% %%% %% % Stream-Load Stream-Load Data Data Base
Base %% % % % %% %%%% % %%% %% % %%%% % % %%% %% % % %%% %% %% %%%% % %
%% %%%% %% %% %% %% %% %% %%% % %% %% %% %% %% %% %% %% %% % %%% %%% %% % %% %%% %%%% %% % % %% % %%%% %% %% %% %%%% %% %% %%
%% % Time Period - 1987 %%%% %% %% %% % %% %% %% %% %% %%% %%% %%%% %%% %%% %% %% %% %% %% %% %% % %%
%%%% % %% %% %% %% %%% %% %% %% % Time Period - 1992 % %% % % % % % %% %% %% %% %%
% % % %% % %% %% %% %% %% % %% %% % % %% %%% % %% %% %% %% %% %% %%% Non-tidal data base Constructed in mid1990s (NSC/USGS) Contains nutrient and sediment data collected by State, Federal, and
NGOs. 3 years minimum Updated through 2002 Linked to GIS so allows for analysis Initial Network Design 703 Stream Gages >1700 Water Quality 313 Active Stream Gages 389 Active Water-Quality 176 QW Associated with Stream Gages 118 Sites Meet Frequency and/or Parameter Criteria for trends Nontidal WaterQuality Monitoring Implementation of strategies to meet water-quality criteria Nontidal network will provide first measure of waterquality improvements Areas of different loadings
Enhance network to target nutrient sources and loads Assess reductions Using SPARROW late 1990s version Initial Network Design Evaluate current sites Propose new locations Tributary Basin boundaries High load areas