Mineralogy Presentation - WordPress.com

Mineralogy Presentation - WordPress.com

Mineralogy Presentation Minerals, origin, occurrence and associations Rock forming minerals Classification, Description and Uses References. The following books are also useful compilations of mineral data and descrip tions. W.A. Deer, R.A. Howie and J. Zussman (1962, 1974, 1980) Rock Forming Minerals (Seven Volumes) Longmans, London. R.W.G. Wyckoff (1964) Crystal Structures. Wiley (New York) (Eight Volumes) (Vols 1, 2, 3 and 4 contain mineral structures). T. Zoltai and J. M. Stout (1985) Mineralogy: Concepts and Principles.

Burgess (Minneapolis). C. Klein and C.S. Hurlbut, Jr. (1993) Manual of Mineralogy (After J.D. Dana, 21st edition). Wiley, (New York L.G. Berry, B. Mason, and R.V. Dietrich (1983) Mineralogy (Second Edition) Freeman (San Francisco). W.H. Balckburn and W.H. Dennen (1988) Principles of Mineralogy . W.C. Brown, K. Frye (1974) Modern Mineralogy. Prentice-Hall. Deer, Howie, Zussman (1992) An Introduction to the Rock Forming Minerals (Second Edition) London Longmans ISBN 0-582-30094-0. 696pp. Mineralogy It is the study of the chemistry, physics and crystal structure of natural, solid, crystalline materials known as mineral i.e. is the study of minerals. It also

includes the study of origin, processes of mineral formation, their geographical distribution, classification, as well as utilization. Importance of Mineralogy Minerals are the building blocks of the planet. The

study of the earth materials depends on an understanding of minerals making up the rocks and sediments Mineral resources: Ore minerals are the source of valuable metals (e.g. Cu, Au) and provide energy resources like uranium. Certain forms of minerals, gems, delight the eye as jewelry. Industrial / agro minerals serve as the raw materials for manufacturing chemicals, dimension stones, aggregates (metals) for road and concrete , etc. Soil formation processes Unfortunately, not all minerals are beneficial; some pose environmental hazards (geological hazards) DEFINITION A mineral is a

naturally occurring homogeneous solid with a definite chemical composition and ordered atomic arrangement formed usually by inorganic processes. Explanation of Definition 1 Naturally Occurring Minerals are not synthetic (made in a

laboratory) Synthetic equivalents of minerals have the qualifier synafter their names Explanation of Definition Cont. 2 Homogenous Minerals cannot be broken down into smaller chemical parts A mineral is considered a single

phase in a thermodynamic sense Explanation of Definition Cont. 3 Solid Minerals are not gases or liquids The exception is liquid mercury (Hg) Explanation of Definition Cont. 4 Definite chemical composition Minerals are made up of elements

which are present as atoms or ions or radicals Examples: silicates: Si4++ O2- SiO44carbonates: C4+ + O2- CO32- phosphates: P5+ + O2- PO43- Carbon:

C Explanation of Definition Cont. 5 Highly-ordered atomic arrangement Minerals are formed by a regularlyarranged internal framework of atoms Explanation of Definition Cont. 6 Inorganic Minerals are not organic compounds (i.e. composed solely

of C,H,N & O) and are not biological in origin Mineraloid Natural materials which resemble minerals in all ways except for one of the 6 criteria e.g. volcanic glass amorphous (only shortrange order) e.g. Metamict minerals: minerals which have lost their internal order (destroyed) due to self-inflicted radiation damage (radioactive decay of some elements) e.g. Uranium Crystal and Crystal structure Minerals, possess an

ordered internal arrangement which make them have regular geometric forms with smooth plane surfaces. This ordered unit form is known as a crystal. Definition: Crystal is a homogeneous piece of a mineral bounded by flat surfaces that formed naturally as the mineral grew and has a threedimensional internal orderstructure or lattice Unit Crystal Cell

consists of molecules (e.g. H2O), anionic groups (e.g. SiO44-, PO43-), ions (e.g. Ca2+, Fe2+), atoms (e.g. Cu, Na) or a combination of anionic groups, ions and/or atoms. The three-dimensional internal order of a crystal is a repetition of identical unit crystal cells. This forms the basis on which symmetry, cleavage and other mineral properties can be explained.

TYPES OF CRYSTALS Chemical Formula Calcite Dolomite CaCO3 CaMg(CO3)2 Kyanite Al2SiO5 Orthoclase KAlSi3O8 Olivine (MgFe)2 SiO4 Apatite Ca5(PO4)3(F,Cl,OH)

Each mineral has a unique arrangement and the number of elements contained in its crystal structure. All minerals have a chemical formula, which is an analysis of the types and amounts of elements present in a mineral. Naming of Minerals Minerals are mostly given a name that

reflects their major chemical component (oxides, sulphides, silicates, carbonates, phosphates etc. Also serves as the basis for their classification Minerals may be given names on the basis of some physical property or chemical aspect, or they may be named after a locality, public figure, a mineralogist etc. Examples Albite (NaAlSi3O8) form Latin albus (white) due to its colour. Naming of Minerals Cont. Chromite (FeCr2O4) because of the presence of a

large amount of chromium in the mineral. Magnetite (Fe3O4) because of its magnetic properties. Silimanite (Al2SiO5) after Professor Benjamin Siliman of Yale University (179-1864). Franklinite (ZuFe2O4) after a locality Franklin, New jersey where it occurs as the dominant zinc mineral. Rhodonite (MnSiO3) from Greek rhodon (a rose) due to its characteristically pink colour. Mineral Formation The origin of chemical elements: Cooling of gaseous elements precipitated first heavy elements in a form of solid

particles dust according to Big Bang theory. Formation Processes: 1 Precipitation 2 Sublimation 3 Crystallization 4 Solid - Solid reactions (Recrystallization) Mineral Formation Cont. Precipitation (settling or fall out) from a fluid like H2O. Within the Earth: by hydrothermal processes, diagenesis, and metamorphism, At or near the Earth's surface: by evaporation, weathering, or biological activity. Sublimation from a vapour. This process is somewhat rarer, but

can take place at a volcanic vent, or deep in space where the pressure is near vacuum. Crystallization from a liquid. This takes place during crystallization of molten rock (magma) either below or at the Earth's surface. Solid - Solid reactions. This process involves minerals reacting with other minerals in the solid state to produce one or more new minerals. Such processes take place during metamorphism and diagenesis due to changing temperature and pressure conditions. Environments The environments of mineral formation geologically are highly varied; within the Earth's crust, different temperatures and depths result in varied minerals and

on the Earths Surface, low temperature lead to precipitation from saline brine (slightly salty water). Based on energy sources environment is groups as: 1 Endogenetic (hypogene)- deep-seated processes in the interior of the earth. 2 Exogenetic (hypergene)- surface processes (at or near the earths surface as well as in the atmosphere and hydrosphere). Mode of Occurrence Magmatic- crystallization from a magma or lava Pegmatitic final stage crystallization of magma Puematolitic - sublimation from volcanic gases Hydrothermal deposition from hot water and steam

Metamorphic and Metasomatic recrystallization of existing minerals Evaporites - sun evaporates water and leaves salt Crystallization during diagenesis of sediments Formation by oxidation and weathering In geologic environments where mineral formation is taking place, the kinds of minerals that form depend on various factors such as: (a) Temperature (b) Pressure (c) The chemical activity of the water present (d) The mobility and relative abundance of chemical element

The mineral formed is defined by two fundamental properties: crystal structure the geometric arrangement of the ions (atoms) composing the minerals. chemical composition- the proportions of different chemical elements contained. . Polymorphism The ability of a specific Graphite Crystal Structure Diamon

d Crystal Structu re mineral to crystallize with more than one structure is known as polymorphism. The various structures of such minerals are known as polymorphic forms or polymorphs. Examples are Diamond and Graphite, Calcite and Aragonite,

Pseudomorphism If a crystal of a mineral is altered so that the internal structure or chemical composition is changed but the external form is preserved it is called a pseudomorph. Thus pseudomorphs are formed as a result of slow replacement of a crystal substance by another substance without any change in the external form and occasionally also in the internal structure of the original crystal. Example Goethite having cubic shape after Pyrite.

Physical Properties The elemental composition and crystal structure of mineral are not readily visible, therefore the field identification and description of mineral species is done on the basis of its physical properties (external aspects). However, physical properties are governed by the chemical composition and the crystal structure of the mineral. Minerals physical properties can be determined by inspection with a hand Physical Properties Cont. The physical properties of minerals include :

Colour Streak Luster Density (Specific Gravity) Hardness Cleavage Fracture Tenacity Crystal habit Crystal Form, etc. Streak It refers to the colour of a powder produced

by pulverizing the mineral. It is obtained by scraping or rubbing the mineral against an unglazed ceramic plate Hardness It is a measure of the relative ability of a mineral to resist scratching (breaking of lattice structure). The stronger the binding force between the atoms, the harder the mineral.

A series of 10 common minerals were chosen as scale (F. Mohs) by comparison with which the relative hardness of any mineral can be told. Hardness Cont. Moh Scale of Hardness 3 1 6 4 5

9 1 0 2 7 8 Talc 1 Gypsum 2 Calcite 3 Flourite 4

Apatite 5 Orthoclase 6 Quartz 7 Topaz 8 Corundum 9 Diamond - 10 Crystal Form Crystal form refers to the general outward appearance i.e. the geometry of a euhedral crystal, one with natural crystal faces that grew unimpeded. A general form is a form in

a particular crystal class that contains faces that intersect all crystallographic axes at different lengths. All other forms that may be present are called special forms. Mineral Classification Reasons for this classification are: 1. Minerals having the same anion or anionic group (oxides, silicates, sulphides halides etc.) dominant in their composition have unmistakable family resemblances, than minerals containing the same

dominant cation. 2. Minerals related by dominance of the same anion tend to occur together or in the same or similar geologic environment. 3. The scheme agrees well with the chemical practice in the naming and classification of inorganic compounds. Mineral Classification Cont. By the character of bonding between atoms the following types of chemical compounds in minerals can be distinguished: 1. Free atoms elements. These are minerals that occur in nature in the native state. 2. Compounds of cations with simple anions

(sulphides, halides and oxides). 3. Compounds of cations with complex anions Mineral Classification Cont. Mineralogica l Group Descript./ Examples Oxides Oxygen combined with one or more metals e.g. Hematite (Fe2O3), Magnetite

(Fe3O4) etc Hydroxides Similar to oxides, but Hydrogen takes the place of a metal Halides Electronegative halogen ions dominate (Cl-, Br-, F-, I-). NaCl (salt) Carbonates

Contains carbonate radical (CO3) e.g. Calcite (CaCO3), Dolomite (CaMg(CO3)2) etc Non-Silicates Native Elements Sulphides & other ides Native metals: gold, silver, copper,

platinum, iron, arsenic, bismuth Native elements: sulphur, diamond and graphite (carbon) Elements complexed with sulphur (sulphides) e.g. Pyrite (FeS2) Others: tellurides, bismuthides, antimonides, Mineral Classification Cont. Borates

Contains borate radical (BO3) e.g. Kernite {Na2B4O6(OH)2.3H2O) } Sulphates Contains sulphate radical (SO4) e.g. Gypsum (CaSO4) Chromates Contains chromate

radical (CrO4) Molybdates Contains molybdate radical (MoO4) Tungstates Contains tungstate radical (WO4) e.g. Scheelite (CaWO4), Wolframite Phosphate s

Contains phosphate radical (PO4) e.g. Triphyllite {Li(Fe,Mn)PO4}, Apatite {Ca5(PO4)F or Cl} Vanadates Contains vanadate radical (VO4) Silicates Silicates

Built on SiO4 tetrahedra or derivative. SiO2 (quartz) Ortho silicates e.g. Olivine, Ring silicates e.g. Megascopic Mineral Identification Determining the name of a mineral involves testing of the physical properties of an unknown mineral for identification purposes. The observer needs to systematically note as many properties as possible for the unknown mineral before

consulting the mineral tables. Below are the key properties to note: Colour Luster: Three main types are metallic, submetallic and nonmetallic Streak Colour Cont. Fracture Crystal Habit Hardness Specific gravity Magnetism

Optical Properties: Fluorescence Effervescence Luminescence Composition of the Crust Element O Si Al Fe Ca Na K Mg

Total Wt% 46.60 27.72 8.13 5.00 3.63 2.83 2.59 2.09 98.59 Atomic% Volume% 62.55 ~94

21.22 ~6 6.47 1.92 1.94 2.34 1.42 1.84 100.00 100.00 Composition of the Crust Cont. Note that eight (8) elements make up over 98% of the Earth's crust and that oxygen is the most abundant

element. This becomes even more evident if the elements are determined on an atomic basis, where we can see that about 63 out of every 100 atoms in the crust are oxygen. On a volume basis, oxygen makes up about 94% of the crust because oxygen is a large anion, and the other elements occur as small cations coordinated by the oxygen anions. Because of the average composition of the crust, the most common minerals found in the crust are silicates and oxides. Of the silicates, the alumina-silicates, like the feldspars and clay minerals are the most common. Rock-forming Minerals Oxygen and silicon are the most abundant elements (make up about 74%

of the earth's crust), thus the silicate minerals are the most common and the largest group and of greater importance than any other rock-forming minerals. Almost all the igneous rock-forming minerals are silicates and they therefore constitute over 90% of the earths crust. Rock-forming Minerals Cont. The Si4+ cation is always surrounded by 4 oxygens in the form of a tetrahedron structure such that

there is a residual 4 charge. It is this SiO4-4 tetrahedron that forms the basis the basic Rock-forming Minerals Cont. When these SiO4-4 tetrahedrons are linked together, only corner oxygens will be shared with other SiO4-4 groups. Several possibilities i.e. polymerizations of the silica (SiO4) tetrahedral exist and give rise to the different silicate groups as: Nesosilicates, Sorosilicates,

Cyclosilicates, Inosilicates, Phyllosilicates and Tectosilicates. Nesosilicates (Ortho or Island Silicates) The SiO4-4 tetrahedra are isolated and bound to each other only by ionic bonds from interstitial cations. Their structure depend chiefly on the size and charge of the interstitial

cations. Olivine is a good example: Sorosilicates (Double Island Silicates) If one of the corner oxygens is shared with another tetrahedron, this gives rise to the sorosilicate group. Referred to as double island group because there are

two linked Cyclosilicates (Ring Silicates) If two of the oxygens are shared and the structure is arranged in a ring we get the basic structural unit of the cyclosilcates or ring silicates. Inosilicates (Single Chain Silicates) If two of the

oxygens are shared in a way to make long single chains of linked SiO4 tetrahedra, we get the single chain silicates or inosilicates. This group is the basis for the Phyllosilicates (Sheet Silicates) If three of the oxygens from each tetrahedral

group are shared such that an infinite sheet of SiO4 tetrahedra are shared we get the basis for the phyllosilicates or sheet silicates. The basic structural group is Si2O52-. The micas, clay minerals, chlorite, talc, and serpentine minerals are all based on this structure. Inosilicates (Double Chain Silicates) If two chains are

linked together so that each tetrahedral group shares three of its oxygens, we can from double chains, with the basic structural group being Si4O116-. The amphibole group Tectosilicates (Framework Silicates) If all of the corner oxygens are shared

with another SiO4 tetrahedron, then a framework structure develops. The basic structural group then becomes SiO2. The minerals quartz, cristobalite, and tridymite all are based on this General Chemical Formula of the Silicates XmYn(ZpOq)Wr, X = cations with large ionic radii and small valence numbers (1 or 2) like K+, Rb+, Ba2+, Na+, and Ca2+

forming a coordination (C.N.) of 6, 8 or 12 with O Y = cations with medium size ionic radii and 2 - 4 valence numbers Al3+, Mg2+, Fe2+, Fe3+, Mn2+, and Ti4+ forming a C.N. of 6 with O Z = cations with small ionic radii and large valence numbers (3 or 4) Si4+ and Al3+, forming a C.N. of 4 with O w = usually is OH-1, F-1 or Cl-1 or equivalent p, q, m, n, r are subscript numbers used to maintain electroneutrality, where m, n, and r depend on the ratio of p to q (p:q) which defines the subclass of the silicates. Aluminosilicates (Al2SiO5) Minerals

Inosilicates (Pyroxenes) Feldspars Accessory Minerals An accessory mineral is a mineral comprising less than 10% (<10%) 0f a rock which makes it insignificant to classification as compared to essential mineral. Though there are a good number of them, few will be considered here. They include: Zircon (ZrSiO4) Sphene Apatite

Staurolite Mineral Associations Minerals will often form in specific environments and be associated with specific minerals. Sometimes a mineral is only associated with a certain suite of minerals. Hence an assemblage of minerals is invariably diagnostic of the conditions under which particular rocks formed than the individual mineral. An important aid in mineral identification is the knowledge of characteristic and widespread mineral associations, which helps by the presence of some easily recognizable minerals first to presuppose and then identify other unknown

minerals characteristic of a given association. Mineral Associations Cont. Mineral associations formed in the interior of the crust (endogenic genesis) differ greatly from those originated at the crust surface (exogenic genesis). Among the endogenic mineral associations one can distinguish magmatic, pegmatic, pueumatolytic and hydrothermal ones. Mineral associations of exogenic origin are formed by chemogenic, organic and mechanical processes. Typical mineral assemblages of plutonic rocks

Uses of Minerals Minerals are useful in many industries in the past and today. Minerals that are used for gems are usually hard. Artists use certain minerals to carve because of their softness. Talc, serpentine, jade, and malachite are soft enough to carve and produce beautiful smooth figures. The colours of some of the minerals also make them excellent choices for ornamental uses. Silicon, used in the computer industry is obtained from quartz which is composed of silicon and oxygen. There are many other minerals that are useful to our society; roads we ride or drive on and the buildings we live learn and work in all contain minerals from iron, tin, nickel,


Recently Viewed Presentations

  • IBM Innovate 2010 Session Track Template

    IBM Innovate 2010 Session Track Template

    Because the customers are very demanding. Average doesn't work here. You have to be really good at baking bread to be successful. And to be sure, the work of baking bread, over and over again, is sometimes boring and irksome....
  • Vocabulary Review - robeson.k12.nc.us

    Vocabulary Review - robeson.k12.nc.us

    Lipid Sudan III and Sudan IV test for the presence of what macromolecule? Lipid One amino acid is called what? Peptide Two amino acids are called what? Dipeptide Three or more amino acids are called what? Polypeptide Sugar found in...
  • Benefitting Most from a Writing Tutorial Writing Lab

    Benefitting Most from a Writing Tutorial Writing Lab

    Did I check these words in the dictionary? ESL students may be diffident about their grammar, so it is crucial to ask them to summarize the patterns of errors they tend to make and resort to a good dictionary for...
  • Pharmacy Training Training Agenda Acronyms ACRONYM MA CFR

    Pharmacy Training Training Agenda Acronyms ACRONYM MA CFR

    Bank Account Number; Pay Statements. Minimum Necessary The Minimum Necessary Rule requires, when using, disclosing, or requesting Protected Health Information (PHI), you must make reasonable efforts to limit PHI to the minimum amount necessary to accomplish the intended purpose of...
  • The Beginner&#x27;s Guide to Bad Engineering Presentations

    The Beginner's Guide to Bad Engineering Presentations

    (e.g., speedup vs. runtime) Don't just show the graph, talk about trends, meaning Bad Presentations Audience won't see your work as great But will make fun of you from the back row Good Presentations Interesting topic, explained at audience's level...
  • WFRN 2018 postconference survey Monday, July 23, 2018

    WFRN 2018 postconference survey Monday, July 23, 2018

    WFRN 2018 post-conference survey. Monday, July 23, 2018. Powered by. Date Created: Tuesday, July 03, 2018. 116. Total Responses. Complete Responses: 116. Q1: Overall, how would you rate the 2018 WFRN (Work and Family Researchers Network) conference?


    Calibri MS PGothic Arial Office Theme 1_Office Theme 2_Office Theme 3_Office Theme Name of Presentation Presenter Name Indicate the NEA Leadership Competency your session addresses: Example - COMPETENCY: BUSINESS Indicate the NEA Strategic Goal and NEA Organizational Priority your session...
  • 8. Stochastic Trend Formulation - University of Washington

    8. Stochastic Trend Formulation - University of Washington

    Times New Roman Arial Symbol Default Design MathType 4.0 Equation Stochastic Trend With Seasonality Stochastic Seasonality - No Trend Stochastic Trend and Seasonality Interpretation of (1-L)(1-Ls) Multiplicative Seasonal ARMA Eviews Commands